Package: RobPC 1.4

RobPC: Robust Panel Clustering Algorithm

Performs both classical and robust panel clustering by applying Principal Component Analysis (PCA) for dimensionality reduction and clustering via standard K-Means or Trimmed K-Means. The method is designed to ensure stable and reliable clustering, even in the presence of outliers. Suitable for analyzing panel data in domains such as economic research, financial time-series, healthcare analytics, and social sciences. The package allows users to choose between classical K-Means for standard clustering and Trimmed K-Means for robust clustering, making it a flexible tool for various applications. For this package, we have benefited from the studies Rencher (2003), Wang and Lu (2021) <doi:10.25236/AJBM.2021.031018>, Cuesta-Albertos et al. (1997) <https://www.jstor.org/stable/2242558?seq=1>.

Authors:Hasan Bulut [aut, cre]

RobPC_1.4.tar.gz
RobPC_1.4.zip(r-4.5)RobPC_1.4.zip(r-4.4)RobPC_1.4.zip(r-4.3)
RobPC_1.4.tgz(r-4.5-any)RobPC_1.4.tgz(r-4.4-any)RobPC_1.4.tgz(r-4.3-any)
RobPC_1.4.tar.gz(r-4.5-noble)RobPC_1.4.tar.gz(r-4.4-noble)
RobPC_1.4.tgz(r-4.4-emscripten)RobPC_1.4.tgz(r-4.3-emscripten)
RobPC.pdf |RobPC.html
RobPC/json (API)

# Install 'RobPC' in R:
install.packages('RobPC', repos = c('https://hsnbulut.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 exports 1 dependencies

Last updated 21 days agofrom:402f9e49a3. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 21 2025
R-4.5-winOKFeb 21 2025
R-4.5-macOKFeb 21 2025
R-4.5-linuxOKFeb 21 2025
R-4.4-winOKFeb 21 2025
R-4.4-macOKFeb 21 2025
R-4.3-winOKFeb 21 2025
R-4.3-macOKFeb 21 2025

Exports:RobPC

Dependencies:trimcluster